skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaczkurkin, Antonia N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Linking neurobiology to relatively stable individual differences in cognition, emotion, motivation, and behavior can require large sample sizes to yield replicable results. Given the nature of between-person research, sample sizes at least in the hundreds are likely to be necessary in most neuroimaging studies of individual differences, regardless of whether they are investigating the whole brain or more focal hypotheses. However, the appropriate sample size depends on the expected effect size. Therefore, we propose four strategies to increase effect sizes in neuroimaging research, which may help to enable the detection of replicable between-person effects in samples in the hundreds rather than the thousands: (1) theoretical matching between neuroimaging tasks and behavioral constructs of interest; (2) increasing the reliability of both neural and psychological measurement; (3) individualization of measures for each participant; and (4) using multivariate approaches with cross-validation instead of univariate approaches. We discuss challenges associated with these methods and highlight strategies for improvements that will help the field to move toward a more robust and accessible neuroscience of individual differences. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. null (Ed.)
    Abstract The developing brain is marked by high plasticity, which can lead to vulnerability to early life stressors. Previous studies indicate that childhood maltreatment is associated with structural aberrations across a number of brain regions. However, prior work is limited by small sample sizes, heterogeneous age groups, the examination of one structure in isolation, the confounding of different types of early life stressors, and not accounting for socioeconomic status. These limitations may contribute to high variability across studies. The present study aimed to investigate how trauma is specifically associated with cortical thickness and gray matter volume (GMV) differences by leveraging a large sample of children ( N  = 9270) from the Adolescent Brain Cognitive Development SM Study (ABCD Study ® ). A latent measure of trauma exposure was derived from DSM-5 traumatic events, and we related this measure of trauma to the brain using structural equation modeling. Trauma exposure was associated with thinner cortices in the bilateral superior frontal gyri and right caudal middle frontal gyrus ( p fdr - values < .001) as well as thicker cortices in the left isthmus cingulate and posterior cingulate ( p fdr - values ≤ .027), after controlling age, sex, and race/ethnicity. Furthermore, trauma exposure was associated with smaller GMV in the right amygdala and right putamen ( p fdr - values ≤ .048). Sensitivity analyses that controlled for income and parental education were largely consistent with the main findings for cortical thickness. These results suggest that trauma may be an important risk factor for structural aberrations, specifically for cortical thickness differences in frontal and cingulate regions in children. 
    more » « less